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Abstract

Predicting the evolution of ice sheets requires numerical models able to accurately
track the migration of ice sheet continental margins or grounding lines. We introduce
a physically-based moving point approach for the flow of ice sheets based on the
conservation of local masses. This allows the ice sheet margins to be tracked explicitly5

and the waiting time behaviours to be modelled efficiently. A finite difference moving
point scheme is derived and applied in a simplified context (continental radially-
symmetrical shallow ice approximation). The scheme, which is inexpensive, is validated
by comparing the results with moving-margin exact solutions and steady states. In
both cases the scheme is able to track the position of the ice sheet margin with high10

precision.

1 Introduction

Ice loss in Greenland and Antarctica accounts for a large fraction of today’s sea-level
rise (Church et al., 2013). This ice loss modifies the ice flow but also translates into the
retreat of continental margins (in Greenland) and grounding lines (mainly in Antarctica).15

Predicting the evolution of both aspects is essential in order to accurately estimate
their future contribution to sea-level change. However, simulating the migration of an
ice sheet margin or a grounding line remains a complex task (see e.g. Vieli and
Payne, 2005; Pattyn et al., 2013). This paper introduces a moving point method for
the numerical simulation of ice sheets, especially the migration of their boundaries. In20

this paper we focus on the migration of continental ice sheet margins.
At the scale of an ice sheet or a glacier, ice is modelled as a flow which follows

the Stokes equations of fluid flows (Stokes, 1845), even though the flow is non-
Newtonian and its rheology is highly nonlinear. Solving this problem at that scale is
costly. A 3-D finite element model called Elmer/Ice has been developed for this purpose25

numerically (see Gagliardini et al., 2013 for a detailed description of Elmer/Ice). Other
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models take advantage of the very small aspect ratio of ice sheets and use a thin
layer approximation differing only in the order of the approximation. The oldest and
numerically least expensive model used for ice flow is the Shallow Ice Approximation
or SIA (Hutter, 1983). It gives an analytical formulation for horizontal velocities of ice
in the sheet and for their vertically averaged counterpart. Although simple and fast,5

the SIA captures well the nonlinearity of the system and is an excellent resource
for testing numerical approaches, since moving-margin exact solutions exist in the
literature (Halfar, 1981, 1983; Bueler et al., 2005).

Significant efforts have been invested in ice sheet modelling. These have led
ice sheet modellers to compare results obtained by various models for the same10

idealistic test problems (see the EISMINT intercomparison project (Huybrechts et al.,
1996; Payne et al., 2000) for ice sheet models using SIA). Most numerical ice sheet
simulations use a fixed grid to calculate the solution of the ice flow equations. In fixed
grid models the ice sheet margins are not precisely located as they generally fall
between grid points. So in order to obtain a good approximation a high grid resolution is15

required around the positions of the ice sheet margin during its evolution, which makes
fixed grid models costly for accurately computing the evolution of the ice margin.

One approach to gain high resolution is to apply adaptative grid techniques, which
allow improved resolution to be achieved in key areas. For example, Cornford et al.
(2013) apply adaptative mesh refinement (AMR) in the case of marine ice sheets20

and grounding line migration. However, even with AMR, the ice sheet margin still falls
between grid points, although by adapting the grid to increase the resolution near the
margin, the accuracy is kept high. Adapting the grid is, nevertheless, an expensive
procedure, as areas where refinement is needed have to be regularly re-identified.

Another possibility is to transform the moving domain. The number of grid points is25

kept constant in time but the accuracy is kept high by the explicit tracking of the position
of the ice sheet margin. This is done by transforming the ice domain to a stretched
coordinate system via a geometric transformation. This approach has been succesfully
applied by Hindmarsh (1993) and Hindmarsh and Le Meur (2001) to a marine ice sheet
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along a flowline. However, it is not easily translated into two dimensions and no pure
transformed grid ice sheet model has been published.

We consider here intrinsically moving grid methods. As in the case of transformed
grids, these methods allow explicit tracking of the ice sheet margin. There exists
a number of techniques for generating the nodal movement in moving grid methods.5

They can be classified into two subcategories, location-based methods and velocity-
based methods (Cao et al., 2003). In location-based methods the positions of the
nodes are redefined directly at each time step by a mapping from a reference grid
(Budd et al., 2009). This is generally done by choosing a monitor function. In velocity-
based methods, on the other hand, the movement of the nodes is defined in terms of10

a time-dependent velocity, which allows the nodes to be influenced by their previous
position (Baines et al., 2005, 2011). Currently, this approach has not been applied to
the dynamics of ice sheets and we address the issue in this paper.

In this paper, we apply a particular velocity-based moving point approach based
on conservation of local mass fractions to continental ice sheets. We derive a finite15

difference moving point scheme in a simplified context and validate the approach
with known exact solutions in the case of radially-symmetrical ice sheets. We show
in particular that the scheme is able to track the position of the ice sheet margin
accurately. The paper is organised as follows: in Sect. 2 we recall the SIA and detail the
simplified context of our study, in Sect. 3 we describe our velocity-based moving point20

approach, and in Sect. 4 we validate our approach by comparison with exact solutions
before concluding in Sect. 5.

2 Ice sheet modelling

2.1 Ice sheet geometry and Shallow Ice Approximation

We consider a single solid phase ice sheet whose thickness at position (x,y) and time25

t is denoted by h(t,x,y). We assume that the ice sheet lies on a fixed bedrock and
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denote by b(x,y) the bed elevation. The surface elevation, s(t,x,y), is then obtained
as

s = b+h (1)

The evolution of ice sheet thickness is governed by the balance between ice gained
or lost on the surface, snow precipitation and surface melting, and ice flow draining ice5

accumulated in the interior towards the edges of the ice sheet. This is summarised in
the mass balance equation

∂h
∂t

=m−∇ · (hU) in Ω(t) (2)

where m(t,x,y) is the surface mass balance (positive for accumulation, negative
for ablation), U(t,x,y) is the vector containing the vertically averaged horizontal10

components of the velocity of the ice, and Ω(t) is the area where the ice sheet is
located.

Formally derived by Hutter (1983), the Shallow Ice Approximation (SIA) is one of
the most common approximations for large-scale ice sheet dynamics. Combined with
Glen’s flow law (Glen, 1955), the SIA provides (in the isothermal case) an analytical15

formulation for U as follows:

U = − 2
n+1

A(ρig)nhn+1|∇s|n−1∇s (3)

Parameters involved in this formulation are summarised in Table 1. Regarding the
exponent n > 1, its fixed value is classically set to 3 (see Cuffey and Paterson, 2010,
for more details).20

2.2 Radially-symmetrical ice sheets

This paper describes and assesses the use of a moving point approach to model ice
sheet evolution based on conservation of mass fraction. As a first step, we confine the
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study to limited area ice sheets with radial symmetry, in other words, Ω(t) = [0,rl (t)] ×
[0,2π]. The ice sheet is centred on (0,0) and rl (t) denotes the position of the ice sheet
margin (edge of the ice sheet) at time t (see Fig. 1). The radial symmetry implies that
the geometry of the sheet depends only on r , so h(t,x,y) = h(t,r), s(t,x,y) = s(t,r)
and b(x,y) = b(r). The vector U can then be written in the radial coordinate system as5

U = U r̂ , U = − 2
n+2

A (ρig)nhn+1

∣∣∣∣∂s∂r
∣∣∣∣n−1∂s

∂r
(4)

where r̂ is the unit radial vector, and the mass balance Eq. (2) simplifies to

∂h
∂t

=m− 1
r
∂ (r hU)

∂r
(5)

A symmetry condition is added at the ice divide (r = 0):

U = 0 and
∂s
∂r

= 0, (6)10

and the ice sheet margin rl (t) is characterised by the Dirichlet boundary condition:

h(t,rl (t)) = 0 (7)

We also assume that the flux of ice through the ice sheet margin is zero (no calving).
The aim of this paper is to propose a moving point numerical method able to

accurately simulate the evolution of the ice sheet margin. Under some hypotheses15

regarding the regularity of the ice thickness near the margin (see Calvo et al., 2002),
we can differentiate Eq. (7) with respect to time. If ∂h/∂r does not tend to zero near
the margin, we obtain the following equation

drl
dt

= U(t,rl (t))−m(t,rl (t))
(
∂h
∂r

)−1

(8)

This equation (Eq. 8) will be used in the moving point approach described in the next20

section.
4242
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3 A moving point approach

In the following paragraphs we describe the moving point method that we use to
simulate the dynamics of ice sheets in the context of Sect. 2.2. This method is
essentially a velocity-based (or Lagrangian) method relying on the construction of
velocities for grid points at each instant of time. This allows the grid to move with5

the flow of ice. Moving points cover the domain only where the ice sheet exists, so
that no grid point is wasted. Adjacent points move to preserve local mass fractions
and the movement is thus based on the physics (Blake, 2001; Baines et al., 2005,
2011; Scherer and Baines, 2012; Lee et al., 2015). This conservation method has been
applied in various contexts and is perfectly suitable for multi-dimensional problems10

(different examples are summarised in Baines et al. (2011) and references therein;
see also Partridge (2013) for the special case of ice sheet dynamics). The key points
of the method are given in the next paragraphs and the numerical validation of the
method is carried out in Sect. 4.

3.1 Conservation of mass fraction15

Moving point velocities are derived from the conservation of mass fractions (CMF). To
apply this principle we first define the total mass of the ice sheet θ(t) as

θ(t) = 2π

rl (t)∫
0

r h(t,r)dr (9)

In fact θ(t) is the total volume of the ice sheet but, since the density of ice is assumed
constant everywhere, θ(t) is proportional to the total mass of the ice sheet and the20

constant of proportionality cancels out.
Since the flux of ice through the ice sheet margin is assumed to be zero, any change

in the total mass over the whole ice sheet is due solely to the surface mass balance
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m(t,r), and hence the rate of change of the total mass, θ̇, is given by

θ̇(t) = 2π

rl (t)∫
0

r m(t,r)dr (10)

We now introduce the principle of the conservation of mass fractions. Let r̂(t) be
a moving point and define µ(r̂) to be the relative mass in the moving subinterval (0, r̂(t))
as5

µ(r̂) =
2π
θ(t)

r̂(t)∫
0

r h(t,r)dr (11)

The rate of change of r̂(t) is determined by keeping µ(r̂) independent of time for all
moving subdomains of [0,rl (t)]. Note that µ(r̂) ∈ [0,1] is a cumulative function with
µ(0) = 0 and µ(rl ) = 1.

3.2 Trajectories of moving points10

We obtain the velocity of a moving point by differentiating Eq. (11) with respect to time,
giving

d
dt

2π

r̂(t)∫
0

r h(t,r)dr

 = µ(r̂) θ̇(t) (12)

Carrying out the time differentiation using Leibniz’s integral rule and substituting for
∂h/∂t from the mass balance Eq. (5) gives15

d
dt

 r̂(t)∫
0

r h(t,r)dr

 =

r̂(t)∫
0

r m(t,r)dr + r̂(t)h(t, r̂(t))
(
dr̂
dt
−U(t, r̂(t))

)
(13)
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with boundary conditions (Eq. 6) at r = 0. From Eqs. (12), (13) and (10), we can
determine the velocity of every interior point as

dr̂
dt

= U(t, r̂(t))+
1

r̂(t)h(t, r̂(t))

µ(r̂)

rl (t)∫
0

r m(t,r)dr −
r̂(t)∫
0

r m(t,r)dr

 (14)

The point at r = 0 is located at the ice divide, which does not move during the
simulation. The point at rl (t) is dedicated to the ice sheet margin, which moves with the5

velocity obtained in Eq. (8). We verify in Appendix A that the interior velocity calculated
by Eq. (14) coincides with the boundary velocities calculated directly from the boundary
conditions (see Eq. 8).

3.3 Determination of the ice thickness profile

Once the velocities dr̂/dt of the moving points r̂(t) have been found from Eq. (14), the10

points are moved in a Lagrangian manner. In addition, the total mass θ(t) is updated
from Eq. (10). The ice thickness profile is then deduced from Eq. (11) as follows.
Differentiating Eq. (11) with respect to r̂2, we obtain

h(t, r̂(t)) =
θ(t)
π

dµ(r̂)

d(r̂2)
(15)

which allows the ice thickness profile at time t to be constructed since dµ(r̂)/d(r̂2) is15

constant in time and therefore known from the initial data. Note that the positivity of
the ice thickness is preserved since µ is by definition a strictly increasing function (see
Eq. 11).

3.4 Asymptotic behaviour at the ice sheet margin

As pointed out by Fowler (1992) and Calvo et al. (2002), with SIA singularities can20

appear at the margin of grounded ice sheets. The singularity arises because of the
4245
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vanishing of h at the margin and the steepening of the slope ∂h/∂r . Nevertheless
the ice velocity U defined by Eq. (4) can remain finite even if the slope is infinite. We
give more details on this subject in this subsection. We also detail the influence of the
singularity on the movement of the ice sheet margin.

At a fixed time and for points r sufficiently close to rl , we can write the ice thickness5

profile h(r) as the first term in a Frobenius expansion

h(r) = (rl − r)γgl (16)

to leading order, where gl = O(1). If γ = 1, then h(r) is locally linear with slope gl , but if
γ < 1 the slope ∂h/∂r is unbounded. Hence in the asymptotic region near the margin,
in the case where the bedrock topography b(r) is constant, from Eq. (4)10

U =
2

n+2
A (ρig)nγn(rl − r)(2n+1)γ−ngl

2n+1 (17)

which vanishes as r tends to rl if γ > n/(2n+1) and remains finite if γ = n/(2n+1).
Supppose that in the evolution of the solution over time, γ(t) > n/(2n+1) initially so

that rl (t) is constant and the boundary is stationary (waiting). If r̂(t) follows a CMF
trajectory then, in the absence of accumulation/ablation, the velocity of the moving15

coordinate r̂(t) is given by

U =
2

n+2
A (ρig)nγ(t)n(rl (t)− r̂(t))(2n+1)γ(t)−ngl (t)

2n+1 (18)

Asymptotically, except at the boundary itself, this velocity is finite and positive, since
U > 0 and its spatial derivative ∂U/∂r < 0 sufficiently close to the boundary, showing
that the distance rl (t)− r̂(t) decreases with time.20

In the absence of accumulation/ablation, therefore, conservation of mass fractions
implies that (rl (t)− r̂(t))U(t, r̂(t))gl (t) is constant in time. Thus, from (16), for points r̂(t)
sufficiently close to the boundary (rl (t)− r̂(t))

γ(t)+1gl (t) is constant in time. Hence, since
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(rl (t)− r̂(t)) is decreasing, γ(t) is also decreasing. When γ(t) reaches n/(2n+1) the
boundary moves.

It is a technical exercise to show that this property extends to cases with
accumulation/ablation and with a general bedrock with a finite slope ∂b/∂r at the
margin (see Partridge, 2013). The key point to notice is that the asymptotic behaviour5

depends on an infinite slope of h at the margin whereas b(r) always has a finite slope.

3.5 Numerics

We now implement a numerical scheme using a finite difference method. The complete
algorithm is detailed in Appendix B. In addition, we explain in Appendix B6 why our
implementation respects the asymptotic behaviour of the ice sheet at its margin.10

4 Numerical results

This section is dedicated to the validation of the numerical scheme derived from the
moving point method detailed in Sect. 3 and to the study of its behaviour. Every
numerical experiment is performed with the parameter values given in Table 1.

4.1 Steady states with flat bedrock15

We start by studying the behaviour of the numerical scheme using a surface mass
balance m(r) constant in time in order to define a steady state. When the steady state
is reached, from Eq. (5), the following relationship is valid:

r m =
∂
∂r

(r h∞U∞r ) (19)

with h∞(r) the thickness of the steady ice sheet and U∞(r) the ice velocity. By20

integrating the previous equation and by including boundary conditions (Eqs. 6 and 7),
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the position of the margin r∞l can be obtained from

r∞l∫
0

rm(r)dr =

r∞l∫
0

∂
∂r

(r h∞U∞r )dr =
[
r h∞U∞r

]∞
0 = 0 (20)

If the bedrock is flat, the profile of the steady ice sheet can be obtained from Eqs. (19)
and (4) as

h(r)∞ =
((

2n+1
nρig

)nn+2
2A

) 1
2(n+1)


r∞l∫
r

 1
r ′

r ′∫
0

m(s)sds


1
n

dr ′


n

2(n+1)

(21)5

Therefore, if the chosen surface mass balance is simple enough, we have an analytical
formula for r∞l from Eq. (20) and the profile of the steady state can be approximated
with high accuracy by numerical integration from Eq. (21) using a composite trapezoidal
rule for example. This approach was already in use in the EISMINT intercomparison
project (Huybrechts et al., 1996) with the following constant-in-time surface mass10

balance

m(r) = min
(

0.5ma−1,10−2 ma−1 km−1 · (450km− r)
)

(22)

Finding rl from Eq. (20) requires the solution of a cubic equation. A numerical
approximation is rl ≈ 579.81km.

As a first test, we consider initialising our numerical model with the following profile:15

h(t0,r) = h0

(
1−
(

r
rl (t0)

)2
)p

(23)
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and study the convergence towards the steady state in three different cases. In each
experiment, the initial grid has 21 points and the model is run for 10 000a with
a constant time step ∆t = 0.1a. We now detail the initial state for each experiment:

a. Uniformly distributed initial grid with rl (0) = 450km, h0 = 1000 m and p = 3/7.

b. Initial grid with rl (0) = 500km with higher resolution near the margin, h0 = 1000 m5

and p = 1.

c. Uniformly distributed initial grid with rl (0) = 600km, h0 = 4000 m and p = 1/4.

The evolution of the geometry and the overall motion of the grid points are shown for
each experiment in Fig. 2. The three experiments show the convergence of every initial
state towards the same steady state. These experiments also show the ability of the10

CMF method to capture the trajectory of the moving ice sheet margin (in advance and
retreat).

We now perform the moving-margin EISMINT experiment (Huybrechts et al., 1996) in
order to validate our numerical model in this case. At the initial time t = 0 we prescribe
a uniformly distributed grid with rl (0) = 450km and an initial ice thickness h(0,r) taken15

as ∆t ·m(r) for the constant time step ∆t = 0.1a. Then we run the model as in the
EISMINT experiment for 25 000a to reach the steady state. As we also want to compare
our scheme with numerical models used in EISMINT, we first perform a model run
with 28 nodes. With the same number of grid points as used in the fixed grid models
included in EISMINT we are able to obtain a very good estimation for the position of20

the margin at steady state (commiting an absolute error of only 138.5m for an exact
position r∞l ≈ 579.81km) without losing accuracy on the ice thickness (see Fig. 3). The
estimation of the ice thickness at the ice divide is 3005.8m compared to 2982.3±26.4m
obtained by 2-D fixed grid models (we exclude 3-D models from our comparison as we
only use radial symmetry, see Huybrechts et al., 1996) and compared to 2987±0.01m25

obtained by a numerical integration of Eq. (21) that we carried out by using a composite
trapezoidal rule.
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We also study the convergence of our method towards the reference solution in this
case when the number of grid points is increased. We observe that the error for the
margin position decreases at an almost quadratic rate O(n1.95

r ) and the error in the
ice thickness at the ice divide at a linear rate O(n1.16

r ) (results obtained by performing
experiments with an initial uniformly spaced grid with nr = 20,28,40,60 and 80 grid5

points).

4.2 Steady states with non-flat bedrock

The steady state approach of the previous section is still valid for an ice sheet lying
on a non-flat bedrock. However, the experiments in such cases are quite limited as we
only have the position of the steady margin from Eq. (20). Nevertheless we carry out10

a few experiments in this context in order to demonstrate that the CMF moving point
approach is perfectly suitable for non-flat bedrock.

We consider the following fixed bedrock elevation:

b(r) = 2000m−2000m ·
( r

300km

)2
+1000m ·

( r
300km

)4

−150m ·
( r

300km

)6
(24)

As in the previous section, experiments are performed with the EISMINT surface mass15

balance (Eq. 22). At an initial time t = 0 we prescribe a uniformly distributed grid with
a margin located at rl (0) = 450km and an initial ice thickness h(0,r) = ∆t ·m(r) for the
constant time step ∆t = 0.1a. The resulting evolution of the geometry and the overall
motion of the grid points are shown for a grid of 20 points in Fig. 4. We also study the
convergence of our method towards the steady state when the number of grid points20

is increased. Again we observe that the error for the margin position decreases at
a nearly quadratic rate O(n1.83

r ) (results obtained by performing experiments with an
initial uniformly spaced grid and nr grid points, nr = 20,30,40,60 and 80).
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4.3 Validation with time-dependent solutions

In the previous paragraphs, steady states were used to validate our numerical CMF
moving point numerical method. However these experiments did not validate the
transient behaviour of the ice sheet margin. To do so, we use exact time-dependent
solutions.5

Few exact solutions for isothermal shallow ice sheets have been derived in the
literature. Most are based on the similarity solutions established by Halfar (1981, 1983)
for a zero surface mass balance. Bueler et al. (2005) extended this work to non-zero
surface mass balance and established a new family of similarity solutions by adopting
the following parameterised form for the surface mass balance,10

m(ε)(t,r) =
ε
t
h(ε)(t,r) (25)

with ε a real parameter in the interval
( −1

2n+1 ,+∞
)
. Assuming that t > 0 this leads to the

following family of similarity solutions

h(ε)(t,r) =
1

tα(ε)

(
h

2n+1
n

0,1 −Λ(ε)
(

r

tβ(ε)

) n+1
n
) n

2n+1

for r ∈
[
0,tβ(ε)Θ(ε)

]
(26)

with15

α(ε) =
2− (n+1)ε

5n+3
, β(ε) =

1+ (2n+1)ε
5n+3

(27)

and

Λ(ε) =
2n+1
n+1

(
(n+2)β(ε)

2A(ρig)n

) 1
n

, Θ(ε) = h
2n+1
n+1

0,1 Λ(ε)−
n
n+1 (28)

The total mass of such ice sheets, as defined in Eq. (9), is

θ(ε)(t) = β(ε)−
2
n+1 tεW1 (29)20
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where W1 is a constant independent of ε

W1 = 2π

Θ(1)∫
0

s
(
h

2n+1
n

0,1 −Λ(1)s
n+1
n

) n
2n+1

ds (30)

We study in this section the accuracy of transient model runs in comparison with
the time-dependent exact solutions. The initialisation of every experiment is done by
using the exact time-dependent solution (Eq. 26) and, at each time step, the surface5

mass balance is evaluated at each moving node by using the relationship m = ε
t h from

Eq. (25). When ε is non-zero, some feedback between the surface mass balance and
the ice thickness is expected (Leysinger Vieli and Gudmundsson, 2004). Each model
run in this section uses a fixed time step of ∆t = 0.01a.

The first experiment is conducted with the constant mass similarity solution (ε = 0)10

between t = 100a and t = 20 000a for the reference period (Fig. 5). We first analyse
the results obtained with a grid made up of 100 nodes, uniformly distributed at the initial
time. In terms of thickness, errors mostly occur near the ice sheet margin (Fig. 6) as is
the case with fixed grid methods (see Bueler et al., 2005). However, the position of the
ice sheet margin is well estimated, the estimated error being kept under one kilometer15

(Fig. 7).
We then study the convergence of our scheme at a final time t = 20 000a when the

number of grid points is increased. We perform the same analysis for ε = −1/8,1/4
and 3/4. Rates of convergence for different errors are summarised in Table 2.

5 Conclusions20

In this paper, we introduced a moving point approach for ice sheet modelling using
the SIA (including non-flat bedrock) based on the conservation of local mass. From
this principle we derived an efficient finite-difference moving point scheme allowing
rapid computation of the solutions. The scheme was validated by comparing results
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with steady states from the EISMINT benchmark (Huybrechts et al., 1996) and time-
dependent solutions from Bueler et al. (2005). Accurate results have been obtained
with a small number of grid points in both cases. Hence the comparison shows that the
approach has considerable potential for future investigations.

Whilst this paper uses a vertically averaged horizontal ice velocity given by the5

shallow ice approximation, the moving mesh scheme is independent of the form of
the ice velocity used here and could be used as a solver for mass balance alongside
more complex vertically-integrated approximations (see e.g. Schoof and Hindmarsh,
2010).

As mentioned earlier, the conservation approach is suitable not only for 1-D-cases10

(flowline or radial) but also for 2-D-scenarios. A first application has been demonstrated
in Partridge (2013) and will be the subject of a new paper. The conservation approach
can also be applied to marine ice sheets. In these cases, different kinds of boundaries
have to be considered: e.g. grounding line, shelf front, and continental margin.
However, the problem of initialisating such a model for use in real applications remains15

open. The incorporation of various data assimilation procedures is currently being
investigated in this context.

Appendix A: Consistency of the moving point approach at boundaries

We now verify that dr̂/dt tends to the velocity obtained from Eq. (8) at the ice margin
when r̂(t) tends to rl (t). Assuming the continuity of ∂h/∂r and m in the vicinity of the20

ice sheet margin, by L’Hôpital’s rule

limr̂(t)→rl (t)
dr̂
dt

= U(t,rl )+ limr̂(t)→rl (t)

 θ̇
θ r̂h(t, r̂)− r̂m(t, r̂)

h(t, r̂)+ r̂ ∂h∂r (t, r̂)

 (A1)
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This gives

limr̂(t)→rl (t)
dr̂
dt

= U(t,rl )−m(t,rl )
(
∂h
∂r

(t,rl )
)−1

(A2)

The limit is consistent with the velocity of the moving margin obtained in Eq. (8). The
same approach can be used to show that dr̂/dt tends to 0 when r̂(t) tends to the ice
divide r = 0.5

Appendix B: A finite difference algorithm

The moving point method is discretised on a radial line using finite differences on the
grid {r̂i}, i = 1, . . .,nr where

0 = r̂1(t) < r̂2(t) < .. . < r̂nr−1(t) < r̂nr (t) = rl (t), (B1)

The approximation of h(t,r) at r̂i (tk) = r̂ki is written hki and that of the ice velocity U(t,r)10

as Uki . The velocity of the points is represented by vki . The symbol θk designates
the numerical approximation of the total mass and the constant mass fractions are
represented by µi for every µ(r̂ki ).

Before giving the formula for every quantity calculated, we give the structure of the
finite difference algorithm in Algorithm 1.15
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approximation of the total mass and the constant mass fractions are represented by µi for
every µ(r̂k

i ).
Before giving the formula for every quantity calculated, we give the structure of the finite

difference algorithm in Algorithm 1.

Algorithm 1 Finite difference moving point algorithm

Require:
{
r̂0
i

}
and

{
h0

i

}
, i = 1, . . . ,nr with r̂0

1 = 0 and h0
nr

= 0.
1: Compute total mass θ0 with eq. (B2)
2: Compute mass fractions µi, i = 1, . . . ,nr, with eq. (B3)
3: while t < tend do
4: Compute ice velocities Uk

i with eq. (B4) and eq. (B5)
5: Compute point velocities vk

i with eq. (B6) and eq. (B7)
6: Update total mass θk+1 with eq. (B8)
7: Update moving point positions r̂k+1

i with eq. (B9)
8: Update ice thickness hk+1

i with eq. (B10) and (B11)
9: k← k + 1

10: t← t + ∆t
11: end while

B1 Initialisation5

At the initial time the user needs to provide the initial location of each grid point
{
r̂0
i

}
and

the initial ice thickness
{
h0

i

}
there. By definition, we assume that r̂0

1 = 0 and h0
nr

= 0. We
estimate the total mass of the ice sheet at the initial time by using a composite trapezoidal
rule approximating eq. (9). This gives:

θ0 =
π

2

nr−1∑

j=1

(
h0

j + h0
j+1

)((
r̂0
j+1

)2−
(
r̂0
j

)2)
(B2)10

18

B1 Initialisation

At the initial time the user needs to provide the initial location of each grid point
{r̂0
i } and the initial ice thickness {h0

i } there. By definition, we assume that r̂0
1 =0

and h0
nr =0. We estimate the total mass of the ice sheet at the initial time by using5

a composite trapezoidal rule approximating Eq. (9). This gives:

θ0 =
π
2

nr−1∑
j=1

(
h0
j +h

0
j+1

)((
r̂0
j+1

)2
−
(
r̂0
j

)2
)

(B2)

We derive the numerical approximation for the mass fractions µi by discretising Eq. (11)
following the same principle:

µ1 = 0, µi =
π

2θ0

i−1∑
j=1

(
h0
j +h

0
j+1

)((
r̂0
j+1

)2
−
(
r̂0
j

)2
)

(B3)10
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B2 Ice velocities

We confine the algorithm to n = 3 for the exponent in the Glen flow law. Then Eq. (4)
giving the ice velocity can be expanded by using the binomial theorem:

|U(t,r)| = 2
5
A (ρig)3

∣∣∣∣∣h4
(
∂b
∂r

)3

+
3
5
∂(h5)

∂r

(
∂b
∂r

)2

+
1
3

(
∂(h3)

∂r

)2
∂b
∂r

+
27
343

(
∂(h7/3)

∂r

)3
∣∣∣∣∣∣

(B4)

We choose to rewrite the radial form of Eq. (4) in this way in order to ensure that the5

ice velocity at the ice sheet margin computed with a finite difference scheme can be
non-zero as noted in Sect. 3.4. The bedrock elevation b and its derivative are known
for every location of the domain. The sign of Uki (Uk1 = 0) is obtained by calculating the
sign of ski − s

k
i−1 (approximating the sign of the surface slope by an upwind scheme).

We also approximate the derivatives of hp for any p > 0 by an upwind scheme:10

∂(hp)

∂r

∣∣∣∣
r=rki

=

(
hki
)p
−
(
hki−1

)p
rki − r

k
i−1

(B5)

B3 Approximate nodal velocities

The velocity of interior nodes is obtained by discretising Eq. (14) as

vk1 = 0, vki = U
k
i +

1

2 r̂ki h
k
i

µi
r̂knr∫
0

m(tk ,r)d
(
r2
)
−
r̂ki∫
0

m(tk ,r)d
(
r2
) (B6)
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where the integrals in Eq. (B6) are approximated by a composite trapezoidal rule. For
the velocity of the ice sheet margin, Eq. (8) is discretised by using an order-1 upwind
scheme, namely,

vknr = U
k
nr
−m
(
tk ,rknr

) r̂knr − r̂knr−1

hknr −h
k
nr−1

(B7)

B4 Time stepping5

The total mass θk+1 is updated by using an explicit Euler scheme

θk+1 = θk +∆t θ̇k = θk +∆t π

r̂knr∫
0

m(t,r)d
(
r2
)

(B8)

Again the integral is approximated by a composite trapezoididal rule.
As in the case of the total mass, the position of the nodes is updated by using an

explicit Euler scheme10

r̂k+1
i = r̂ki +∆t vki (B9)

with ∆t small enough to preserve the order in Eq. (B1).

B5 Approximate ice thickness

The ice thickness for interior nodes hk+1
i is recovered algebraically at the new time

using an order-2 midpoint approximation of Eq. (15), namely,15

hk+1
i =

θk+1

π
µi+1 −µi−1(

r̂k+1
i+1

)2
−
(
r̂k+1
i−1

)2
(B10)

4257

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/4237/2015/tcd-9-4237-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/4237/2015/tcd-9-4237-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 4237–4270, 2015

Moving point
approach to model

shallow ice sheets in
radially-symmetrical

cases

B. Bonan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The ice thickness at the ice divide hk+1
1 is obtained by using the order-1 upwind

scheme.

hk+1
1 =

θk+1

π
µ2 −µ1(

r̂k+1
2

)2
−
(
r̂k+1
1

)2
(B11)

B6 Behaviour of the approximate ice velocity at the ice margin

As in Sect. 3.4, assuming the topography of the bedrock is flat at the vicinity of the5

margin, the asymptotic form of the radial ice velocity is

U =
2

n+2
A (ρig)nγn(rl − r)(2n+1)γ−ngl

2n+1 (B12)

Hence the leading term in the numerical approximation (Eq. B4) to the ice velocity at
the approximation hl to the ice margin is

− 2
5

sgn
(
snr − snr−1

)
A (ρig)3

(
3
7

)3

∣∣∣∣∣∣∣
h7/3
nr
−h7/3

nr−1

r̂nr − r̂nr−1

∣∣∣∣∣∣∣
3

= −2
5

sgn
(
snr − snr−1

)
A (ρig)3

(
3
7

)3

∣∣∣∣∣∣∣
h7/3
nr−1

r̂nr − r̂nr−1

∣∣∣∣∣∣∣
3

(B13)10

since hnr = 0. But from Eq. (B12) the asymptotic analytic ice velocity (when n = 3) is

2
5
A (ρig)3

(
3
7

)3

(rnr − r)
7γ−3gI

7 =
2
5
A (ρig)3 27

343

(
h(r)7/3

rnr − r

)3

(B14)
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by Eq. (16). Hence the numerical approximation to the ice velocity has the same
asymptotic behaviour as the asymptotic analytic ice velocity with n = 3. The result also
holds for general n.
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Table 1. Parameters involved in the computation of the vertically averaged horizontal
components of the velocity of the ice.

Parameter Meaning Value

n exponent in Glen flow law 3
A Glen flow law coefficient 10−16 Pa−3 a−1

ρi density of ice 910 kgm−3

g gravitational acceleration 9.81 ms−2
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Table 2. Rate of convergence of different errors between numerical results obtained for time-
dependent solutions at time t = 20 000a. The different estimated rates of convergence are
obtained by performing experiments with nr = 10,20,40,60,80,100 and 200 grid points for
different configurations of surface mass balance (Eq. 25).

ε = 0 ε = −1/8 ε = 1/4 ε = 3/4

RMS error on h O(n−1.07
r ) O(n−1.10

r ) O(n−1.10
r ) O(n−1.12

r )
Max. error on h O(n−0.57

r ) O(n−0.60
r ) O(n−0.59

r ) O(n−0.60
r )

Error on rl O(n−1.32
r ) O(n−1.41

r ) O(n−1.38
r ) O(n−1.41

r )
Error on total volume – O(n−1.24

r ) O(n−1.43
r ) O(n−1.43

r )
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Figure 1. Section of a grounded radially-symmetrical ice sheet.

4264

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/4237/2015/tcd-9-4237-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/4237/2015/tcd-9-4237-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 4237–4270, 2015

Moving point
approach to model

shallow ice sheets in
radially-symmetrical

cases

B. Bonan et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 2. Evolution of the geometry and overall motion of the grid points for three experiments
with the EISMINT surface mass balance and initial profile described by Eq. (23). Top: initial
uniform grid with rl (0) = 450km, h0 = 1000m and p = 3/7, middle: initial grid with higher
resolution near the margin with rl (0) = 500km, h0 = 1000m and p = 1, bottom: initial uniform
grid with rl (0) = 600km, h0 = 4000m and p = 1/4.
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Figure 3. The steady state from the EISMINT moving-margin experiment compared with our
25 000a model run with 28 nodes, uniformly distributed at the initial time. The reference profile
is obtained by a numerical integration of Eq. (21) using a composite trapezoidal rule. The error
in the ice thickness occurs mostly near the ice sheet margin, as in other experiments (RMS
error is 15.71m and maximum error is 58.23m). The position of the margin is well determined
as the absolute error is only 138.5m.
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Figure 4. Evolution of the geometry and overall motion of the grid points for the non-flat bedrock
(topography given in Eq. 24) with the EISMINT surface mass balance. At steady state, the
observed error for the position of the margin is 127.7m.
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Figure 5. The reference ice sheet profile (ε = 0) displayed for t = 100 years, t = 1000 years,
and at 1000 year intervals thereafter. Rapid changes occur in the state of the sheet at the
beginning of the simulation, then the dynamics dramatically slow. The ice thickness at the ice
divide decreases at a rate t−1/9 and the position of the margin increases at a rate t1/18.
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Figure 6. The result obtained at final time t = 20 000a for ε = 0 with 100 nodes equally
distributed at initial time t = 100 a and a fixed time step ∆t = 0.01 a is compared to the
reference. A maximum error of 134 m on the ice thickness is obtained at the margin, while
the interior of the sheet has errors less than 10 m. The position of the margin is obtained with
an error of 880 m.
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Figure 7. Evolution of the RMS error and maximum absolute error in the ice thickness, and
absolute error in the position of the margin during the run, for the case ε = 0 with 100 nodes
equally distributed at initial time t = 100a and a fixed time step ∆t = 0.01a. Errors in the ice
thickness decrease as the ice sheet slows down. The errors in the position of the margin
increase in time but their evolution is slower when the dynamics are slower.
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